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Abstract. We present RPA calculations of the spectra of acoustic plasmons in GaSb. SnTe 
and Bi. We find that acoustic plasmons only just exist in Bi, having asmall critical wavevector 
of about 10 ,pm-', beyond which they do not exist. In n-GaSb with 1.4 X 10" electrons/m3, 
the calculations give an acoustic plasmon with velocity about 10' m s - '  and relative damping 
l w ' ' l / o '  about 0.1. The acoustic plasmon exists for wavevectors up to at least 1 0 0 p t - '  
(where the RPA breaks down). In p-SnTe with 1.5 x 10'"holes/m3, we find an acoustic 
plasmon with velocity about 2 X 105m s- '  and relative damping about 0.1. The spectrum 
ends abruptly at a critical wavevector which is about 100,um-'. We conclude that the 
prospects for observing acoustic plasmons are poor in Bi, but good in GaSb and SnTe. 

1. Introduction 

An acoustic plasmon is a longitudinal oscillation of the carriers of a two-component 
plasma, with the polarisations of the two components out of phase and partially can- 
celling. Acoustic plasmons in a two-component degenerate Fermi system were first 
studied by Silin (1952). Since then there has been a trickle of theoretical papers and little 
published experimental work on these excitations. The introductory section of Bennacer 
and Cottey 1989 (BC) outlines briefly the historical development. There is still no definite 
experimental proof that acoustic plasmons exist in a homogeneous two-component 
degenerate Fermi system. 

Interest in acoustic plasmons has however recently revived, because of their possible 
role in high-Tc superconductivity. Little (1988) has reviewed the known experimental 
constraints on theories of high-Tc superconductivity. He concludes that a successful 
theory should have virtually all the attributes of the BCS theory. The one important 
difference is that charge carrier pairing should be mediated, not by phonons, but by 
some charged excitation with an energy several times that of phonons. Theories of high- 
T, superconductivity involving acoustic plasmons have been proposed by Ruvalds (1987) 
and Griffin (1988). Canright and Vignale (1988) report, however, in a pre-publication 
abstract that acoustic plasmons contribute little to superconductivity in their model of a 
two-dimensional two-component electron gas. (Other models involving plasmons, but 
not acoustic plasmons, include the soft-plasmon model of Ashkenazi et a1 (1987), and 
the collective polarisation wave model of Vigneron et a1 (1988). 
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Our purpose in the present paper is to apply the general theoretical analysis of BC 
to simple materials. We think that the possible relevance of acoustic plasmons to high- 
T, superconductors renders timely the further development of theory and experiment 
in simple materials. Strengthening the foundations would permit more reliable appli- 
cation to complex materials. 

BC gives a general survey of the acoustic plasmon spectra for practicable semimetal 
and degenerate semiconductor parameters, and an application of the theory to the GaAs 
electron-hole plasma (for which experimental spectroscopy was done by Pinczuk et a1 
1981). In the present paper we give the results of calculations of the acoustic plasmon 
spectrum for GaSb, SnTe and Bi. 

2. The two-component plasma model 

We model the charge carriers in semimetals and semiconductors as a two-component 
degenerate fermi gas. The two components are labelled by i (= l ,  2), and component i 
has v, spherical pockets, all equivalent by symmetry, with Fermi wavevector kF , ,  Fermi 
velocity u F , ,  Fermi energy e F , ,  effective mass m: and e F ,  = h2k$!/2m:. We label the 
two plasmas such that u F , .  

We treat the ions in a jellium model, which supplies a constant background relative 
permittivity &bg. The value of E can be large so the high-density limit ( r ;  61) can be 

b$ reached. This is indeed the case in the systems studied here. 
We consider a plasma wave - exp i(qx - of) with q real and positive, with complex 

frequency w = w’ + iw” (U‘ > 0). We define the dielectric function &(q, w )  as (per- 
mittivity of system)/EoEbg, where E [ ,  is the permittivity of the vacuum. The dielectric 
function E of the two-component plasma, allowing only intra-pocket transitions, is given 
by 

E ( q >  @I = 1 - ( e2 /&,Ebgq2) (X ,  + XZ) 
where X, (i = 1 ,2 )  is the polarisation function of the component i. 

We use the random phase approximation (RPA) with exact analytic continuation to 
the lower half of the complex frequency plane (Cottey 1985, BC) to get an explicit form 
for E .  We find it convenient to introduce the reduced plasmon velocity and wavevector 

U = @/quFz = q/2kF, 

We also write r, for u F , / u F ,  and rk for kF, /kF, .  Then E is given (BC) by 

E ( Z ,  U) = 1 + 2c, v l g ( r k z ,  r , ,u) + 2c2vZg(z, U) 

where 

g(2, U) = (22)-2{1+ (Sz)-’[$(z - U) - %(-2  - U)]} 

%(5> = (1 - 5 * > M ( 5  + 1)/G - 1)1> + A% 

f = f ’  + i5” 
and 

c ,  = (2/n)(4/9n)”3r,”,p, = (1/3)r&,  (i = 1,2)  
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Figure 1. The band models of the materials studied (a ) ,  GaSb (zincblende structure); 
(b) ,  SnTe (rocksalt structure); ( c )  Bi (rhombohedral). 

are convenient density parameters. r&, is the standard reduced density parameter for a 
single pocket (sp) of component i, defined by 

(4n/3)(GplarT,)3 = v ,  /n ,  
where n, is the carrier density of component i with all pockets counted and a;, is the 
reduced Bohr radius for component i, i.e. 4n&,~,,h~/e~m:‘. 

The function E ’ ( &  = E ’  + id’) is discontinuous on the lines 

U ’  = 1 ( 1  + u ’ ’ ~ ) ” ~  * zI and U’ = / ( r i 2  + u ” ~ ) ’ / ~  (rkz)/r,l 

but E” is continuous. The discontinuities are consequences of the discontinuity of the 
Fermi-Dirac function at zero temperature. 

The dispersion relations for plasmons are the solutions of E ( q ,  U) = 0. In a two- 
component system there is always an ‘ordinary plasmon’ branch (with w + up as q -+ 0). 
The acoustic plasmon branch (with o/q+ constant as q-’ 0) exists for a range of 
wavevectors q from zero to some sharp cut-off qc, for some values of the system 
parameters c2v2, c l v l ,  r,  and rk. The range of values of these parameters in which 
acoustic plasmons exist is discussed in BC. 

In the results of BC an acoustic plasmon is invariably subject to Landau damping by 
plasma 1 but not by plasma 2. Now the maximum energy of a particle-hole pair in plasma 
2 is h2q(q + 2kF2)/2m?, which would be the line z + 1 in the u-z figures 2-7. With 
allowance for finite damping (BC), the onset of Landau damping by plasma 2 is when 
the real part of U ,  U’, meets the curve z + (1 + u ” ~ ) ~ / ~ .  This curve is plotted in each of 
figures 2-7. When U’ meets this curve (at a critical wavevector qc = 2kF2zc) the acoustic 
plasmon abruptly ceases to exist. The spectra of SnTe and Bi, figures 4-7, have such a 
cut-off, and it is less than the maximum wavevector (qmax = 2kF2z,ax) for which the RPA 
is valid. In GaSb on the other hand, zmax < zc, and the results are given for 0 s z 6 z,,, 
(figures 2,3).  

3. Results 

3.1. GaSb 

We assume a simple ‘metallic’ model (Fistul’ 1969) of strongly n-doped GaSb, with 
electrons occupying four subsidiary L minima as well as the r minimum (figure l(a)). 
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Figure 2. Real and imaginary parts of the acoustic plasmon velocity versus wavevector for 
GaSb system G1, with carrier density n = 1.4 X m-3 and Fermi energy eF = 72.5 meV. 
The graph ends around the wavevector at which the RPA breaks down. A ,  R e  (acoustic 
plasmon velocity); B ,  upper edge of particle-hole pair continuum of plasma 2; C ,  / I m  
(acoustic plasmon velocity) 1 . 

The necessary high carrier concentration can be achieved (Kauschke et a1 1987). The 
values of m and mf are from Hilsum and Rose-Innes (1961, p 56) and Hilsum (1966) 
respectively. The two systems studied are G1 with n = 1.4 x carriers/m3, eF = 
72.5 meV and G2 with n = 2.3 x 

The acoustic plasmon energies which we calculate always turn out to be well below 
that of the transverse optic phonon at zero wavevector in GaSb, which is 28 meV (Farr 
et al 1975). Therefore the appropriate value of &bg is &,,go = 15 (Hilsum and Rose-Innes 
1961, p 181). The carrier density is sufficient (BC) for validity of the RPA, but the 
maximum wavevector at which the RPA is valid (z,,, = 0.3) is less than the wavevector 
z ,  at which the acoustic plasmon spectrum ends. The results U' and /u"I against z are 
shown for 0 6 z 6 0.3 in figures 2 and 3. 

carriers/m3, eF = 75 meV. 

3.2. SnTe 

SnTe is a p-type semimetal (figure l ( b ) ) ,  the carrier concentration p depending on the 
conditions of production. For the values of p considered here, the crystal structure is 
extremely close to the rocksalt structure (Cottey eta1 1987). Band structure calculations 
have been performed for this structure (Cohen and Tsang 1971, Melvin and Hendry 
1979), and these results are invariably used in analysing the properties of SnTe. For the 
hole concentration considered here, there are 4 L pockets (plasma 1) and 12 2 pockets 
(plasma 2). The values of mF and mz (figure l ( b ) )  which we use are best values around 
the Fermi energies of the systems we studied, based on the band structures of Cohen 
and Tsang (1971) and of Melvin and Hendry (1979). 

The transverse optic phonon in SnTe is soft at small wavevector, with wTo = 2 meV 
(Jantsch et a1 1983, p 6), whereas we find the acoustic plasmons exist with frequencies 
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Figure3. As for figure 2, but for GaSbsystem G2. with n = 2.3 x 10’‘ ,-’and e, = 75 meV. 
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Figure 4. Spectrum for SnTe system S1, with hole concentrationp = 2.2 X 10” m-‘and eF = 

100 meV. The spectrum ends abruptly at z = 0.2, when it meets the particle-hole continuum 
of the slower species (in the 2 pockets). Curve labelling is as in figure 2. 

up to 29 meV for system S1 (figure 4) and up to 12 meV for system S2 (figure 5 ) .  Thus 
for most of the acoustic plasmon spectrum the frequency is well above wTor and the 
appropriate value of &bg is &bgx = 45 (Reid1 et a1 1965). For sufficiently small wavevectors 
the acoustic plasmon frequency is less than wTo and the appropriate value of &bg is 
which is very large (Jantsch et a1 1983). It was shown however in BC that the complex 



8882 

- 1.5 

.-- 
-1.0 'U 

z 
E 

"7 - 
L 

-0.5 

-0 

B Bennacer et a1 

L 

9(1"0 

0 50 100 150 
L I I I 

1 .o - 1  

C 

0 0.05 0.10 0 15 0.20 

z 

FigureS. Spectrum for SnTe system S2, withp = 1.5 x 
ling is as in figure 2. 

m-3. eF = 85 meV. Curve label- 

reduced velocity U is independent of reduced density (and hence of &hg) in the limit 
q + 0. We have therefore neglected the interaction between the optic phonon and the 
acoustic plasmon. The resulting acoustic plasmon spectrum is correct except for energy 
near wTo, where a typical 'mode-crossing' interaction may be anticipated. 

The SnTe spectra meet the reduced 2-particle-hole pair continuum at z ,  = 0.2, and 
this is well within the range of validity of the RPA (z,,, = 0.4 and 0.5 for systems S1 and 
S2 respectively). 

3.3. Bi 

The relevant band structure of Bi is shown in figure l (c ) .  The mass values are the best 
spherical values, calculated at the Fermi energies of the systems studied, using the 
ellipsoidal non-parabolic band model of Smith et a1 (1964). The effect of the ellipsoidal 
nature of the pockets is described in the Appendix. 

By virtue of the small energy gap at L, the conditions for the Lyddane-Sachs-Teller 
relation do not hold for Bi, and &hg is independent of frequency in the range considered. 
We use a direction averaged value &hg = 88 from the data of Gerlach et a1 (1976). 

System Bi3 is undoped Bi (ne = nh) .  The main feature of the acoustic plasmon 
spectrum (figure 6) is that it barely exists. It starts (i.e. at q = 0) close to the T particle- 
hole pair continuum and meets it at a small wavevector, z ,  = 0.02. That the acoustic 
plasmon barely exists can also be seen from the point of view of the q = 0 special case 
of the theory (Cottey 1985, BC). It is shown there that u(O), i.e. U at q = 0, depends only 
on two parameters: the ratio of Fermi velocities of the two plasmas, Y ,  = u F 2 / u F I  ; and 
the ratio of Thomas-Fermi screening wavevectors, = K ~ ~ ~ / K ~ ~ ~ .  These parameters 
take, for system Bi3, the values R = 1.54, ru = 0.45. These parameters are near to the 
edge of the existence domain in R - r ,  space (Cottey 1985, BC). 
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Figure 6. Spectrum for Bi system Bi3 (undoped Bi) with n, = nh = 
28 meV. The critical wavevector is small; the acoustic plasmon 
labelling is as in figure 2 .  
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Figure 7. Spectrum for Bi system Bi4 (n-doped Bi) with n, = 3.4 X 

1.9 X loz3 m-j and eF = 30 meV. Curve labelling is as in figure 2. 
m-j, nh = 

On the basis of the surveyable q = 0 theory, we were also able to consider whether 
doping Bi, either n-type or p-type, would lead to parameters more favourable for 
acoustic plasmons. The answer is ‘no’. Figure 7 shows the results for n-doped Bi with 
donor concentration n d  = ne - nh = 1.5 x m-3. 
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4. Conclusion 

Although acoustic plasmons have long been predicted, they have not been observed 
unambiguously in a homogeneous two-component degenerate Fermi plasma. Earlier 
discussions of acoustic plasmons have usually been based on the Pines-Froehlich 
approximation (uF2 < U < u ~ , ) ,  and often also with the restrictions v 2  = v i ,  
kF> = k F I .  In this case, the condition for weakly damped acoustic plasmons is mi m2. 
Pakly on this basis, Bi has (sometimes implicitly, in that it has been much studied) been 
considered a good candidate for acoustic plasmons (McWhorter and May 1964, Olivei 
1971, Ruvalds 1981). 

Our analysis, which treats damping and finite wavevector exactly (within the RPA), 
shows that Bi is a poor candidate for acoustic plasmons. The principal weakness of the 
results of figures 6 and 7 is the neglect of the ellipsoidal nature of the pockets, which is 
very pronounced in Bi. We give in the Appendix the results for zero wavevector, allowing 
for ellipsoidal pockets. These results are based on the Pines-Froehlich approximation; 
the corrections must be regarded as only a rough guide. The ellipticity of the electron 
pockets (the faster component) does not enter the expression (Al . l )  for the direction 
(A) dependent velocity  it). The eccentricity of the hole pocket (the slower component), 
which is considerably less than that of the electron pockets, does influence u(A). The 
onset of Landau damping by the holes varies with A in the same way as u(A). The acoustic 
plasmon is expected to exist, but only for small wavevectors, in all directions A.  

Because of the cubic symmetry, U for GaSb and SnTe (allowing for ellipsoidal 
pockets) is independent of A at q = 0. Allowing for eccentricity of the C pockets in SnTe 
increases U ,  above the result of the spherical pocket model, by 25%. The magnitude of 
the critical wavevector in SnTe does depend on A ,  when ellipticity is allowed for. We 
expect acoustic plasmons to propagate in the [loo] and [110] directions, but not in the 
[111] direction. 

We believe the prospects for observing acoustic plasmons in strongly doped n-GaSb, 
and in SnTe, are good, on the grounds: (i) that the relative damping is small ( 1  w”1 / 
w’ - 0.1 in each case reported here); and (ii) that the modes exist up to reasonably large 
wavevectors (- 100 pm-l). 
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Appendix Al: Notes on the generalisation to ellipsoidal pockets 

In the case of spherical pockets which we considered so far in this paper and in BC, the 
v i  pockets of plasma 1 were equivalent to each other, and the v 2  pockets of plasma 2 
were equivalent to each other. If the pockets are now ellipsoidal, then for q > 0 and 
arbitrary direction A of the plasma wave, we need to identify the symmetry sets of pockets 
which are equivalent to each other and also have equivalent relationships to i t . The 
number I of such sets is in general greater than 2. Furthermore the normal modes are, 
in general, purely longitudinal only when A lies along certain symmetry directions. We 
are currently investigating the general problem. Here we mention some provisional 
expectations and results. 
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From our experience with solutions of two- and three-component plasmas with 
spherical pockets (BC) we anticipate (along a direction in which pure longitudinal modes 
exist), one ordinary plasmon and a number J of acoustic plasmons with 0 < J 6 I - 1. 
We further expect J to be small (usually 0 or 1) for real systems. 

u F ,  and q small), the problem can 
be solved analytically for arbitrary A. The result is a single acoustic plasma mode with 
the direction-dependent speed o(A) given by 

In the Pines-Frohlich approximation (uF2  =GZ U 

(Al . l )  

Here a2p is the inverse mass tensor of pocket p of component 2, E 2  is the equivalent 
spherical inverse mass (= (det and U is the acoustic plasmon velocity in the 
equivalent spherical model. The correction depends on the eccentricity of the pockets 
of component 2 only. 

For a cubic crystal the right side of equation (Al . l )  becomes 4Tr(a2)/E2, i.e. 
(arithmetic mean of principal components)/(geometric mean of principal components). 

The correction is modest, except for strongly elongated ellipsoids. In SnTe, we 
estimate from the band structure calculations of Melvin and Hendry (1979) that the best 
principal values of a to take at energies near the Fermi energy of the systems S1 and S2 
are cyI (along the I: axis) = 4.0, a;I: (transverse to the I: axis, and in a (001) plane 
containing 4 I: axes) = 6.7, cytL (transverse to the I: axis, and normal to the 2 plane) = 
0.5. These values give 

u(A) = 1.25 V (independent of A). 

For GaSb, the conclusion ‘u(A) independent of A’ also applies because of the cubic 
symmetry, but we do not have data on the eccentricity of the L pockets. 

In Bi, v 2  = 1, and the principal inverse masses of the holes are (Smith et a1 1964) 
p3 = 1.45 (along the trigonalaxis) andp,  = b2 = 15.6 (normal to the trigonalaxis). Then 
u ( A ) / U  varies between a minimum of 0.45 for the trigonal direction and a maximum of 
1.5 for directions in the basal plane. 

In the ellipsoidal model, the condition for absence of Landau damping by pocket p 
of component 2 is 

Calculation of the right side of this inequality leads to 

u(A)  > u~*(Aa2pA/&*)1’* (A1.2) 

where UF2 is the Fermi velocity of component 2 in the equivalent spherical model. We 
have applied this result to SnTe and Bi. For SnTe, with ri - [OOl], there is weak Landau 
damping by a symmetry set comprising 8 of the 12 Z pockets. For A - [110], there is 
Landau damping by 2 of the 12 pockets. We think it likely that in these cases an acoustic 
plasmon will exist. For A - [ l l l ] ,  all 12 pockets contribute Landau damping, and we do 
not expect an acoustic plasmon. 

For Bi, the n dependence is the same in equation (A1.2) as in equation (Al , l ) ,  
because v 2  = 1. Consequently the conclusion of the spherical model applies: an acoustic 
plasmon exists for all A ,  but only just. qc will be small in every direction. 
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